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Abstract
For positive a and b by employing representations for the Mellin
transform of the product of two generalized hypergeometric functions
1F2(−a2x2)1F2(−b2x2), a new transformation formula for the series 4F3(1) is
deduced.

PACS number: 02.30.Gp
Mathematics Subject Classification: 33C20, 33C60, 44A20

1. Introduction

In 1987, Wimp in his investigation of associated Jacobi polynomials deduced by means of
Bailey’s method for the case p = 2 [1, p 15] a transformation formula [7, lemma 2] for the
generalized hypergeometric series p+1Fp((ap+1); (bp); 1). In 1997 Miller [3, equation (1.3b)]
rederived Wimp’s substantial result by means of rather elementary methods in lieu of contour
integration and the calculus of residues, which were employed earlier.

In the present investigation we shall be concerned with the specialization p = 3 of the
result alluded to above for p+1Fp(1). Thus we record

4F3

(
a, b, c, d

e, f, g

)
= �(e)�(f )�(g)�(1 − d)

×
{

�(b − a)�(c − a)

�(b)�(c)�(e − a)�(f − a)�(g − a)�(1 + a − d)

× 4F3

(
a, 1 + a − e, 1 + a − f, 1 + a − g

1 + a − b, 1 + a − c, 1 + a − d

)

+
�(a − b)�(c − b)

�(a)�(c)�(e − b)�(f − b)�(g − b)�(1 + b − d)

× 4F3

(
b, 1 + b − e, 1 + b − f, 1 + b − g

1 + b − a, 1 + b − c, 1 + b − d

)
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+
�(a − c)�(b − c)

�(a)�(b)�(e − c)�(f − c)�(g − c)�(1 + c − d)

× 4F3

(
c, 1 + c − e, 1 + c − f, 1 + c − g

1 + c − a, 1 + c − b, 1 + c − d

)}
(1.1)

where here and below we have suppressed the unit argument in each 4F3(1). However, we
shall show that another transformation formula exists, namely

4F3

(
a, b, c, d

e, f, g

)
= �(e)�(f )

�(1 − c)�(1 − d)

�(1 − g)

×
{

�(b − a)�(1 + a − g)

�(b)�(e − a)�(f − a)�(1 + a − c)�(1 + a − d)

× 4F3

(
a, 1 + a − e, 1 + a − f, 1 + a − g

1 + a − b, 1 + a − c, 1 + a − d

)

+
�(a − b)�(1 + b − g)

�(a)�(e − b)�(f − b)�(1 + b − c)�(1 + b − d)

× 4F3

(
b, 1 + b − e, 1 + b − f, 1 + b − g

1 + b − a, 1 + b − c, 1 + b − d

)

− �(g − 1)�(1 + a − g)�(1 + b − g)

�(a)�(b)�(g − c)�(g − d)�(1 + e − g)�(1 + f − g)

× 4F3

(
1 + a − g, 1 + b − g, 1 + c − g, 1 + d − g

2 − g, 1 + e − g, 1 + f − g

)}
. (1.2)

Obvious specializations of the parameters in equations (1.1) and (1.2) yield two three-term
relations for Clausen’s series 3F2(1) typified by equations (1)–(6) in [1, section 3.7].

2. Convergence criteria for F (s)

In order to derive equation (1.2) we consider for positive a and b the Mellin transform

F(s) ≡
∫ ∞

0
xs−1

1F2

(
α

β, γ
;−a2x2

)
1F2

(
ξ

µ, ν
;−b2x2

)
dx (2.1)

where for convergence of the integral at its lower limit the conditional inequality Re(s) > 0
must hold.

Convergence of the integral at its upper limit may be determined by employing an
asymptotic result for 1F2(−z2) given in [4, equation (4.2)]. Thus we have for |x| →
∞, |arg(x)| < π/2

1F2

(
α

β, γ
;−a2x2

)
1F2

(
ξ

µ, ν
;−b2x2

)
=

{
Ax−2α−2ξ + Bxα+ξ−β−γ−µ−ν+1

× cos

[
2ax +

π

2

(
α − β − γ +

1

2

)
+ O

(
1

x

)]

× cos

[
2bx +

π

2

(
ξ − µ − ν +

1

2

)
+ O

(
1

x

)]
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+ Cxα−β−γ−2ξ+ 1
2 cos

[
2ax +

π

2

(
α − β − γ +

1

2

)
+ O

(
1

x

)]

+ Dxξ−µ−ν−2α+ 1
2 cos

[
2bx +

π

2

(
ξ − µ − ν +

1

2

)
+ O

(
1

x

)] }

×
[

1 + O
(

1

x2

)]
(2.2)

where the nonzero A,B,C and D are not only dependent on the parameters of each 1F2, but
are also proportional to powers of a and b. Since they are not important here, their forms are
not displayed.

Noting that the product of two cosines in equation (2.2) is essentially proportional to a
sum of two cosines, we need only determine for z > 0 the convergence of each integral on the
right-hand side of∫ ∞

z

xs−1
1F2(−a2x2)1F2(−b2x2) dx

= A

∫ ∞

z

xs−2α−2ξ−1 dx +
B

2

∫ ∞

z

xs+α+ξ−β−γ−µ−ν

× cos

[
2(a − b)x +

π

2
(α − ξ + µ + ν − β − γ ) + O

(
1

x

)]
dx

+
B

2

∫ ∞

z

xs+α+ξ−β−γ−µ−ν

× cos

[
2(a + b)x +

π

2
(α + ξ − µ − ν − β − γ + 1) + O

(
1

x

)]
dx

+ C

∫ ∞

z

xs+α−β−γ−2ξ− 1
2 cos

[
2ax +

π

2

(
α − β − γ +

1

2

)
+ O

(
1

x

)]
dx

+ D

∫ ∞

z

xs+ξ−µ−ν−2α− 1
2 cos

[
2bx +

π

2

(
ξ − µ − ν +

1

2

)
+ O

(
1

x

)]
dx (2.3)

where for brevity we have suppressed the multiplicative factor (1 +O(1/x2)) in each integrand.
There are three cases to consider: a �= b; a = b which is called the critical case and

a = b where α − ξ + µ + ν − β − γ is an odd positive or negative integer N which is called
the supercritical case. (See [5] and [6] for more on the critical and supercritical cases of the
discontinuous integrals that are specializations of F(s) defined by equation (2.1).)

It suffices to discuss only the convergence of the second integral I on the right-hand
side of equation (2.3), since the other integrals are dealt with in the same way. (For details
and references concerning justification for the convergence criteria below, see [3, section 3].)
When a �= b, I converges provided that Re(s + α + ξ − β − γ − µ − ν) < 0, but when a = b

it converges provided that Re(s + α + ξ − β − γ − µ − ν) < −1. In the supercritical case,
however, for z sufficiently large the cosine in the integrand of I reduces to

cos
(π

2
N

)
cosO

(
1

x

)
− sin

(π

2
N

)
sinO

(
1

x

)
= ±O

(
1

x

)

and so I converges provided that Re(s + α + ξ − β − γ − µ − ν) < 0.
Now taking into account the convergence of the other four integrals on the right-hand side

of equation (2.3), we deduce the following.



11856 A R Miller

Convergence criteria for F(s): When a �= b or in the supercritical case F(s) converges
provided that

0 < Re s < 2 Re(α + ξ) (2.4a)

0 < Re s < Re(β + γ + µ + ν − α − ξ) (2.4b)

0 < Re s < Re
(
β + γ + 2ξ − α + 1

2

)
(2.4c)

0 < Re s < Re
(
µ + ν + 2α − ξ + 1

2

)
. (2.4d)

In the critical case when a = b and α − ξ +µ+ν −β −γ is not an odd integer, F(s) converges
provided that

0 < Re s < Re(β + γ + µ + ν − α − ξ − 1) (2.4e)

and the inequalities (2.4a), (2.4c), (2.4d) hold true.

3. Representations for F (s)

Since the generalized hypergeometric function pFq is a specialization of Meijer’s G-function
Gu,v

m,n (see [2, p 129]), we may write

1F2

(
α

β, γ
;−a2x2

)
= �(β)�(γ )

�(α)
G

1,1
1,3

(
a2x2

∣∣∣∣ 1 − α

0, 1 − β, 1 − γ

)
.

Thus by using the well-known translation property of the G-function [2, p 69] and making the
change in variables x2 = t , we may write equation (2.1) as

F(s) = 1

2
a2−s �(β)�(γ )�(µ)�(ν)

�(α)�(ξ)

×
∫ ∞

0
G

1,1
1,3

(
a2t

∣∣∣∣ s
2 − α

s
2 − 1, s

2 − β, s
2 − γ

)
G

1,1
1,3

(
b2t

∣∣∣∣ 1 − ξ

0, 1 − µ, 1 − ν

)
dt.

The conditions for the convergence of the latter integral are also given by the inequalities (2.4).
The improper integral of a product of two arbitrary G-functions (when it exists) is itself

proportional to a G-function (for this important result due to Meijer see [2, equation (3.10.11)])
and so we arrive at

F(s) = �(β)�(γ )�(µ)�(ν)

�(α)�(ξ)
a−sG

2,2
4,4

(
b2

a2

∣∣∣∣1 − ξ, 1 − s
2 , β − s

2 , γ − s
2

0, α − s
2 , 1 − µ, 1 − ν

)
(3.1a)

which can also be written as

F(s) = �(β)�(γ )�(µ)�(ν)

�(α)�(ξ)
b−sG

2,2
4,4

(
a2

b2

∣∣∣∣1 − α, 1 − s
2 , µ − s

2 , ν − s
2

0, ξ − s
2 , 1 − β, 1 − γ

)
. (3.1b)

Equation (3.1b) can be obtained from (3.1a) and vice versa, since in equation (2.1) when a
is interchanged with b, the respective parameters of each 1F2 may be interchanged with each
other, thus leaving F(s) unchanged.

The function G
2,2
4,4(z) where |z| < 1 may be written essentially as a sum of two generalized

hypergeometric functions 4F3(z) (see [2, p 131]). Thus from equations (3.1a) and (3.1b)
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we deduce, respectively

F(s) = 1

2
a−s

{
�(β)�(γ )

�(α)

�
(

s
2

)
�

(
α − s

2

)
�

(
β − s

2

)
�

(
γ − s

2

) 4F3

(
ξ, s

2 , 1 + s
2 − β, 1 + s

2 − γ

µ, ν, 1 + s
2 − α

; b2

a2

)

+
�(β)�(γ )�(µ)�(ν)

�(ξ)�(β − α)�(γ − α)

�
(

s
2 − α

)
�

(
α + ξ − s

2

)
�

(
α + µ − s

2

)
�

(
α + ν − s

2

) (
b2

a2

)α− s
2

× 4F3

(
α, 1 + α − β, 1 + α − γ, α + ξ − s

2
1 + α − s

2 , α + µ − s
2 , α + ν − s

2

; b2

a2

)}
(3.2a)

where 0 < b < a and α − s
2 may not be an integer or zero, and

F(s) = 1

2
b−s

{
�(µ)�(ν)

�(ξ)

�
(

s
2

)
�

(
ξ − s

2

)
�

(
µ − s

2

)
�

(
ν − s

2

) 4F3

(
α, s

2 , 1 + s
2 − µ, 1 + s

2 − ν

β, γ, 1 + s
2 − ξ

; a2

b2

)

+
�(β)�(γ )�(µ)�(ν)

�(α)�(µ − ξ)�(ν − ξ)

�
(

s
2 − ξ

)
�

(
α + ξ − s

2

)
�

(
β + ξ − s

2

)
�

(
γ + ξ − s

2

) (
a2

b2

)ξ− s
2

× 4F3

(
ξ, 1 + ξ − µ, 1 + ξ − ν, α + ξ − s

2
1 + ξ − s

2 , β + ξ − s
2 , γ + ξ − s

2

; a2

b2

)}
(3.2b)

where 0 < a < b and ξ − s
2 may not be an integer or zero.

Note that in equations (3.2) α + ξ − s
2 can never be a negative integer or zero, since

inequality (2.4a) must always hold true for the convergence of F(s). Furthermore, the
parameters β, γ, µ, ν may also never assume negative integer or zero values, since the
generalized hypergeometric functions 1F2 in equation (2.1) generally do not exist in this
case.

Again by symmetry of variables a, b and concomitant parameters, the representations
given for F(s) by the right members of equations (3.2) may be obtained from each
other. Nevertheless, the two representations are quite different and in fact are not analytic
continuations of each other when a �= b. Therefore the integral F(s) is of a type called a
discontinuous integral.

However, in the critical case not only do the inequalities (2.4a), (2.4c), (2.4d) and (2.4e)
guarantee the convergence of F(s), but also the inequality between the two right members
of (2.4e) guarantees the convergence of each of the 4F3(1) in equations (3.2). Moreover, an
argument very similar to that given in [3, section 3] for a related integral confirms that F(s)

is continuous across a = b provided that the inequalities (2.4a), (2.4c), (2.4d) and (2.4e) hold
true. In the critical case we are then permitted to equate the right members of equations (3.2).

We should mention that in the supercritical case when a = b, neither of the expressions
on the right-hand side of equations (3.2) provide a valid representation for F(s). This is so
because it is required by (2.4b) that 0 < Re s < Re(β +γ +µ+ ν −α − ξ), but as we indicated
above each of the 4F3(1) converges provided that Re s < Re(β + γ + µ + ν − α − ξ − 1).
Although the problem of finding a representation for F(s) in the supercritical case is open,
it is encouraging to know that a representation (that is valid in the critical and supercritical
cases) in terms of Clausen’s series 3F2(1) has recently been discovered for the specialization
F(s)|α=β (see [6, theorem 1]).

Although equations (3.1) provide representations for F(s) in terms of Meijer’s G-function,
the G-function is essentially just an equivalent notation for a certain contour integral and so is
not immediately useful computationally.
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4. Transformation formula for 4F3(1)

We have already noted in the previous section that in the critical case we are permitted to equate
the right members of equations (3.2). Thus we obtain on replacing s/2 by s, suppressing the
unit argument in each of the 4F3(1), and some rearrangement

4F3

(
ξ, s, 1 + s − β, 1 + s − γ

µ, ν, 1 + s − α

)
= �(µ)�(ν)

�(β − s)�(γ − s)

�(α − s)

×
{

�(s − ξ)�(α + ξ − s)

�(s)�(µ − ξ)�(ν − ξ)�(β + ξ − s)�(γ + ξ − s)

× 4F3

(
ξ, 1 + ξ − µ, 1 + ξ − ν, α + ξ − s

1 + ξ − s, β + ξ − s, γ + ξ − s

)

+
�(α)�(ξ − s)

�(β)�(γ )�(ξ)�(µ − s)�(ν − s)
4F3

(
α, s, 1 + s − µ, 1 + s − ν

β, γ, 1 + s − ξ

)

− �(α)�(s − α)�(α + ξ − s)

�(s)�(ξ)�(β − α)�(γ − α)�(α + µ − s)�(α + ν − s)

× 4F3

(
α, 1 + α − β, 1 + α − γ, α + ξ − s

1 + α − s, α + µ − s, α + ν − s

)}
. (4.1)

Now setting ξ = a, s = b, 1 + b − β = c, 1 + b − γ = d, µ = e, ν = f, 1 + b − α = g, we
deduce equation (1.2).

It is easily verified that each of the series 4F3(1) in equation (1.2) converges provided that
Re(e + f + g − a − b − c − d) > 0 which is equivalent under the latter transformations of
parameters (including s �→ 2s made earlier) to the right members of inequalities (2.4e), i.e.,
Re(β + γ + µ + ν − α − ξ − s − 1) > 0. Moreover, the conditions given by the inequalities
(2.4a), (2.4c) and (2.4d) have become superfluous with regard to equation (4.1) and therefore
may be waved by appealing to the principle of analytic continuation.
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